α (am Eckpunkt A), β (am Eckpunkt B) und γ (am Eckpunkt C)
Benennung der Seiten
Die Seiten werden nach dem Eckpunkt benannt mit Kleinbuchstaben, die ihnen gegenüber liegen.
Satz des Pythagoras
Im rechtwinkligem Dreieck ist die Summe der Quadrate über den Katheten gleich groß, wie das Quadrat über der Hypotenuse. Im nachfolgenden Bild ist der Rechte Winkel der an Ecke C des Dreiecks.
c² = a² + b²
a² = c² - b²
b² = c² - a²
c = √(a² + b²)
a = √(c² - b²)
b = √(c² - a²)
a Kathete
b Kathete
c Hypotenuse
Winkelfunktionen
sin α = a : c
cos α = b : c
tan α = a : b
cot α = b : a
sin β = b : c
cos β = a : c
tan β = b : a
cot β = a : b
a Gegenkathete von α, Ankathete von β
b Gegenkathete von β, Ankathete von α
c Hypotenuse
Sinussatz
a : b = sin α : sin β
a = (sin α · b) / sin β
b = (sin β · a) / sin α
sin α = (sin β · a) / b
sin β = (sin α · b) / a
b : c = sin β : sin γ
b = (sin β · c) / sin γ
c = (sin γ · b) / sin β
sin β = (sin γ · b) / c
sin γ = (sin β · c) / b
c : a = sin γ : sin α
c = (sin γ · a) / sin α
a = (sin α · c) / sin γ
sin γ = (sin α · c) / a
sin α = (sin γ · a) / c
Kosinussatz
a² = b² + c² - 2bc · cos α
b² = a² + c² - 2ac · cos β
c² = a² + b² - 2ab · cos γ
Fläche/Umfang
A = (l1 · b) / 2
l1 = (A · 2) / b
b = (A · 2) / l1
U = l1 + l2 + l3
l1 = U - (l2 + l3)
l2 = U - (l1 + l3)
l3 = U - (l1 + l2)
A Fläche
l1, l2, l3 Längen der Seiten
b Breite
U Umfang