|
|
Zeile 1: |
Zeile 1: |
| {{TOC-Man|[[#Allgemeine Eigenschaften|Allgemeine Eigenschaften]] - [[#Satz des Pythagoras|Satz des Pythagoras]] - [[#Kathetensatz|Kathetensatz]] - [[#Höhensatz|Höhensatz]] - [[#Winkelfunktionen|Winkelfunktionen]] - [[#Sinussatz|Sinussatz]] - [[#Kosinussatz|Kosinussatz]] - [[#Fläche/Umfang|Fläche/Umfang]]}}
| | ein dreieck hat drei ecken. drei seiten. drei kanten. drei winkel. drei strecken. drei punkte. das ist ein dreieck. :] |
| == Allgemeine Eigenschaften ==
| |
| [[Bild:Dreieck.png|thumb|200px|Ein allgemeines Dreieck]]
| |
| {|
| |
| !|<div align="left">Bennennung der Eckpunkte</div>
| |
| |A, B und C (normalerweise im Uhrzeigersinn)
| |
| |-
| |
| !|<div align="left">[[Winkel]]summe</div>
| |
| |180°
| |
| |-
| |
| !|<div align="left">Bennennung der Winkel</div>
| |
| |α (am Eckpunkt A), β (am Eckpunkt B) und γ (am Eckpunkt C)
| |
| |-
| |
| !|<div align="left">Benennung der Seiten</div>
| |
| |Die Seiten werden nach dem Eckpunkt benannt mit Kleinbuchstaben, die ihnen gegenüber liegen.
| |
| |-
| |
| |}
| |
| | |
| | |
| == Satz des Pythagoras ==
| |
| 1+1=2 :D
| |
| | |
| http://www.science-at-home.net/bilder/wikidata/mathematik/rechtwinkliges_dreieck_01.gif
| |
| | |
| {|
| |
| |
| |
| {| border="1" cellpadding="4" cellspacing="0" style="BORDER-COLLAPSE: collapse" borderColor="#336699" align="center"
| |
| |- bgcolor="#e1e8f2" align="center" valign="middle"
| |
| |'''c²''' = a² + b²
| |
| |}
| |
| |
| |
| {| border="1" cellpadding="4" cellspacing="0" style="BORDER-COLLAPSE: collapse" borderColor="#336699" align="center"
| |
| |- bgcolor="#edecf2" align="center" valign="middle"
| |
| |'''a²''' = c² - b²
| |
| |}
| |
| |
| |
| {| border="1" cellpadding="4" cellspacing="0" style="BORDER-COLLAPSE: collapse" borderColor="#336699" align="center"
| |
| |- bgcolor="#edecf2" align="center" valign="middle"
| |
| |'''b²''' = c² - a²
| |
| |}
| |
| |}
| |
| | |
| {|
| |
| |
| |
| {| border="1" cellpadding="4" cellspacing="0" style="BORDER-COLLAPSE: collapse" borderColor="#336699" align="center"
| |
| |- bgcolor="#e1e8f2" align="center" valign="middle"
| |
| |'''c''' = √(a² + b²)
| |
| |}
| |
| |
| |
| {| border="1" cellpadding="4" cellspacing="0" style="BORDER-COLLAPSE: collapse" borderColor="#336699" align="center"
| |
| |- bgcolor="#edecf2" align="center" valign="middle"
| |
| |'''a''' = √(c² - b²)
| |
| |}
| |
| |
| |
| {| border="1" cellpadding="4" cellspacing="0" style="BORDER-COLLAPSE: collapse" borderColor="#336699" align="center"
| |
| |- bgcolor="#edecf2" align="center" valign="middle"
| |
| |'''b''' = √(c² - a²)
| |
| |}
| |
| |}
| |
| | |
| a Kathete
| |
| b Kathete
| |
| c Hypotenuse
| |
| | |
| == Kathetensatz ==
| |
| [[Bild:Kathetensatz.png|thumb|160px|Der Kathetensatz des Euklid]]
| |
| | |
| Das Quadrat über a ist flächengleich zum Rechteck mit den Seiten p und c, und das Quadrat über b ist flächengleich zum Rechteck mit den Seiten q und c.
| |
| | |
| {{Formel|=a<sup>2</sup> = p·c}}
| |
| {{Formel|=b<sup>2</sup> = q·c}}
| |
| | |
| == Höhensatz ==
| |
| {|
| |
| |[[Bild:Höhensatz.png|float:right|160px|Der Höhensatz des Euklid]]
| |
| |Der Höhensatz besagt, dass in einem rechtwinkligen Dreieck das Quadrat über der Höhe flächengleich dem Rechteck aus den Hypotenusenabschnitten ist.
| |
| |}
| |
| | |
| {{Formel|=h<sup>2</sup> = p·q}}
| |
| | |
| == Winkelfunktionen ==
| |
| | |
| http://www.science-at-home.net/bilder/wikidata/mathematik/rechtwinkliges_dreieck_02.gif
| |
| | |
| {|
| |
| |
| |
| {| border="1" cellpadding="4" cellspacing="0" style="BORDER-COLLAPSE: collapse" borderColor="#336699" align="center"
| |
| |- bgcolor="#e1e8f2" align="center" valign="middle"
| |
| |'''sin α''' = a : c
| |
| |}
| |
| |
| |
| {| border="1" cellpadding="4" cellspacing="0" style="BORDER-COLLAPSE: collapse" borderColor="#336699" align="center"
| |
| |- bgcolor="#edecf2" align="center" valign="middle"
| |
| |'''cos α''' = b : c
| |
| |}
| |
| |
| |
| {| border="1" cellpadding="4" cellspacing="0" style="BORDER-COLLAPSE: collapse" borderColor="#336699" align="center"
| |
| |- bgcolor="#edecf2" align="center" valign="middle"
| |
| |'''tan α''' = a : b
| |
| |}
| |
| |
| |
| {| border="1" cellpadding="4" cellspacing="0" style="BORDER-COLLAPSE: collapse" borderColor="#336699" align="center"
| |
| |- bgcolor="#edecf2" align="center" valign="middle"
| |
| |'''cot α''' = b : a
| |
| |}
| |
| |}
| |
| | |
| {|
| |
| |
| |
| {| border="1" cellpadding="4" cellspacing="0" style="BORDER-COLLAPSE: collapse" borderColor="#336699" align="center"
| |
| |- bgcolor="#e1e8f2" align="center" valign="middle"
| |
| |'''sin β''' = b : c
| |
| |}
| |
| |
| |
| {| border="1" cellpadding="4" cellspacing="0" style="BORDER-COLLAPSE: collapse" borderColor="#336699" align="center"
| |
| |- bgcolor="#edecf2" align="center" valign="middle"
| |
| |'''cos β''' = a : c
| |
| |}
| |
| |
| |
| {| border="1" cellpadding="4" cellspacing="0" style="BORDER-COLLAPSE: collapse" borderColor="#336699" align="center"
| |
| |- bgcolor="#edecf2" align="center" valign="middle"
| |
| |'''tan β''' = b : a
| |
| |}
| |
| |
| |
| {| border="1" cellpadding="4" cellspacing="0" style="BORDER-COLLAPSE: collapse" borderColor="#336699" align="center"
| |
| |- bgcolor="#edecf2" align="center" valign="middle"
| |
| |'''cot β''' = a : b
| |
| |}
| |
| |}
| |
| | |
| a Gegenkathete von α, Ankathete von β
| |
| b Gegenkathete von β, Ankathete von α
| |
| c Hypotenuse
| |
| | |
| == Sinussatz ==
| |
| | |
| {|
| |
| |
| |
| {| border="1" cellpadding="4" cellspacing="0" style="BORDER-COLLAPSE: collapse" borderColor="#336699" align="center"
| |
| |- bgcolor="#e1e8f2" align="center" valign="middle"
| |
| |a : b = sin α : sin β
| |
| |}
| |
| |
| |
| {| border="1" cellpadding="4" cellspacing="0" style="BORDER-COLLAPSE: collapse" borderColor="#336699" align="center"
| |
| |- bgcolor="#edecf2" align="center" valign="middle"
| |
| |'''a''' = (sin α · b) / sin β
| |
| |}
| |
| |
| |
| {| border="1" cellpadding="4" cellspacing="0" style="BORDER-COLLAPSE: collapse" borderColor="#336699" align="center"
| |
| |- bgcolor="#edecf2" align="center" valign="middle"
| |
| |'''b''' = (sin β · a) / sin α
| |
| |}
| |
| |
| |
| {| border="1" cellpadding="4" cellspacing="0" style="BORDER-COLLAPSE: collapse" borderColor="#336699" align="center"
| |
| |- bgcolor="#edecf2" align="center" valign="middle"
| |
| |'''sin α''' = (sin β · a) / b
| |
| |}
| |
| |
| |
| {| border="1" cellpadding="4" cellspacing="0" style="BORDER-COLLAPSE: collapse" borderColor="#336699" align="center"
| |
| |- bgcolor="#edecf2" align="center" valign="middle"
| |
| |'''sin β''' = (sin α · b) / a
| |
| |}
| |
| |}
| |
| | |
| {|
| |
| |
| |
| {| border="1" cellpadding="4" cellspacing="0" style="BORDER-COLLAPSE: collapse" borderColor="#336699" align="center"
| |
| |- bgcolor="#e1e8f2" align="center" valign="middle"
| |
| |b : c = sin β : sin γ
| |
| |}
| |
| |
| |
| {| border="1" cellpadding="4" cellspacing="0" style="BORDER-COLLAPSE: collapse" borderColor="#336699" align="center"
| |
| |- bgcolor="#edecf2" align="center" valign="middle"
| |
| |'''b''' = (sin β · c) / sin γ
| |
| |}
| |
| |
| |
| {| border="1" cellpadding="4" cellspacing="0" style="BORDER-COLLAPSE: collapse" borderColor="#336699" align="center"
| |
| |- bgcolor="#edecf2" align="center" valign="middle"
| |
| |'''c''' = (sin γ · b) / sin β
| |
| |}
| |
| |
| |
| {| border="1" cellpadding="4" cellspacing="0" style="BORDER-COLLAPSE: collapse" borderColor="#336699" align="center"
| |
| |- bgcolor="#edecf2" align="center" valign="middle"
| |
| |'''sin β''' = (sin γ · b) / c
| |
| |}
| |
| |
| |
| {| border="1" cellpadding="4" cellspacing="0" style="BORDER-COLLAPSE: collapse" borderColor="#336699" align="center"
| |
| |- bgcolor="#edecf2" align="center" valign="middle"
| |
| |'''sin γ''' = (sin β · c) / b
| |
| |}
| |
| |}
| |
| | |
| {|
| |
| |
| |
| {| border="1" cellpadding="4" cellspacing="0" style="BORDER-COLLAPSE: collapse" borderColor="#336699" align="center"
| |
| |- bgcolor="#e1e8f2" align="center" valign="middle"
| |
| |c : a = sin γ : sin α
| |
| |}
| |
| |
| |
| {| border="1" cellpadding="4" cellspacing="0" style="BORDER-COLLAPSE: collapse" borderColor="#336699" align="center"
| |
| |- bgcolor="#edecf2" align="center" valign="middle"
| |
| |'''c''' = (sin γ · a) / sin α
| |
| |}
| |
| |
| |
| {| border="1" cellpadding="4" cellspacing="0" style="BORDER-COLLAPSE: collapse" borderColor="#336699" align="center"
| |
| |- bgcolor="#edecf2" align="center" valign="middle"
| |
| |'''a''' = (sin α · c) / sin γ
| |
| |}
| |
| |
| |
| {| border="1" cellpadding="4" cellspacing="0" style="BORDER-COLLAPSE: collapse" borderColor="#336699" align="center"
| |
| |- bgcolor="#edecf2" align="center" valign="middle"
| |
| |'''sin γ''' = (sin α · c) / a
| |
| |}
| |
| |
| |
| {| border="1" cellpadding="4" cellspacing="0" style="BORDER-COLLAPSE: collapse" borderColor="#336699" align="center"
| |
| |- bgcolor="#edecf2" align="center" valign="middle"
| |
| |'''sin α''' = (sin γ · a) / c
| |
| |}
| |
| |}
| |
| | |
| == Kosinussatz ==
| |
| | |
| {| border="1" cellpadding="4" cellspacing="0" style="BORDER-COLLAPSE: collapse" borderColor="#336699" align="center"
| |
| |- bgcolor="#e1e8f2" align="center" valign="middle"
| |
| |'''a²''' = b² + c² - 2bc · cos α
| |
| |}
| |
| | |
| {| border="1" cellpadding="4" cellspacing="0" style="BORDER-COLLAPSE: collapse" borderColor="#336699" align="center"
| |
| |- bgcolor="#e1e8f2" align="center" valign="middle"
| |
| |'''b²''' = a² + c² - 2ac · cos β
| |
| |}
| |
| | |
| {| border="1" cellpadding="4" cellspacing="0" style="BORDER-COLLAPSE: collapse" borderColor="#336699" align="center"
| |
| |- bgcolor="#e1e8f2" align="center" valign="middle"
| |
| |'''c²''' = a² + b² - 2ab · cos γ
| |
| |}
| |
| | |
| == Fläche/Umfang ==
| |
| http://www.science-at-home.net/bilder/wikidata/mathematik/dreieck.gif
| |
| | |
| {|
| |
| |
| |
| {| border="1" cellpadding="4" cellspacing="0" style="BORDER-COLLAPSE: collapse" borderColor="#336699" align="center"
| |
| |- bgcolor="#e1e8f2" align="center" valign="middle"
| |
| |'''A''' = (l<sub>1</sub> · b) / 2
| |
| |}
| |
| |
| |
| {| border="1" cellpadding="4" cellspacing="0" style="BORDER-COLLAPSE: collapse" borderColor="#336699" align="center"
| |
| |- bgcolor="#edecf2" align="center" valign="middle"
| |
| |'''l<sub>1</sub>''' = (A · 2) / b
| |
| |}
| |
| |
| |
| {| border="1" cellpadding="4" cellspacing="0" style="BORDER-COLLAPSE: collapse" borderColor="#336699" align="center"
| |
| |- bgcolor="#edecf2" align="center" valign="middle"
| |
| |'''b''' = (A · 2) / l<sub>1</sub>
| |
| |}
| |
| |}
| |
| | |
| {|
| |
| |
| |
| {| border="1" cellpadding="4" cellspacing="0" style="BORDER-COLLAPSE: collapse" borderColor="#336699" align="center"
| |
| |- bgcolor="#e1e8f2" align="center" valign="middle"
| |
| |'''U''' = l<sub>1</sub> + l<sub>2</sub> + l<sub>3</sub>
| |
| |}
| |
| |
| |
| {| border="1" cellpadding="4" cellspacing="0" style="BORDER-COLLAPSE: collapse" borderColor="#336699" align="center"
| |
| |- bgcolor="#edecf2" align="center" valign="middle"
| |
| |'''l<sub>1</sub>''' = U - (l<sub>2</sub> + l<sub>3</sub>)
| |
| |}
| |
| |
| |
| {| border="1" cellpadding="4" cellspacing="0" style="BORDER-COLLAPSE: collapse" borderColor="#336699" align="center"
| |
| |- bgcolor="#edecf2" align="center" valign="middle"
| |
| |'''l<sub>2</sub>''' = U - (l<sub>1</sub> + l<sub>3</sub>)
| |
| |}
| |
| |
| |
| {| border="1" cellpadding="4" cellspacing="0" style="BORDER-COLLAPSE: collapse" borderColor="#336699" align="center"
| |
| |- bgcolor="#edecf2" align="center" valign="middle"
| |
| |'''l<sub>3</sub>''' = U - (l<sub>1</sub> + l<sub>2</sub>)
| |
| |}
| |
| |}
| |
| | |
| A Fläche
| |
| l<sub>1</sub>, l<sub>2</sub>, l<sub>3</sub> Längen der Seiten
| |
| b Breite
| |
| U Umfang
| |
| | |
| ----
| |
| | |
| '''Pfad: [[Hauptseite|Home]] / [[Mathematik]] / [[Formeln Geometrie|Geometrie]] / [[Formeln Dreieck|Dreieck]]'''
| |
| | |
| [[Kategorie:Mathematik]]
| |
| [[Kategorie:Geometrie]]
| |
| [[Kategorie:Formeln]]
| |